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Abstract—An important property of the periodic composites is that the dispersion curve is characterized by
pass bands and stop bands. In the past these have been demonstrated, analytically and experimentally, for
layered and fibrous composites. The purpose of the present experimental investigation is to show that the
same phenomena exist in periodic particulate composites.

1. INTRODUCTION

Composite materials differ from the homogeneous materials most markedly in their dynamic
mechanical behavior, particularly when a characteristic length of the deformation becomes
comparable to that of the microstructure. Therefore, from the viewpoint of engineering
applications, an understanding of the dynamic response is important. Propagation of periodic
and transient waves through composites has been the subject of numerous investigations (see
[1] for a relatively recent review, see also [2]). An important characteristic of the propagation of
periodic waves through periodic composites is the existence of pass bands and stop bands.
These have been experimentally demonstrated in both the layered (one-dimensionai)
composites[3, 4] as well as the fibrous (two-dimensional) composites[5, 6]. To the best of our
knowledge, similar results, either theoretical or experimental, have not been reported for the
three-dimensional case of periodic particulate composites; this is the purpose of the present
work.

The phase velocity of longitudinal waves through periodic particulate composites was
measured as a function of frequency. Two composites were studied: (1) Glass spheres in an
epoxy matrix and; (2) Steel spheres in a PMMA matrix. Two pass bands were observed in the
first composite, whereas three pass bands could be identified in the second. The experimental
technique employed was that of through-transmission of an ultrasonic pulse.

2. SPECIMEN PREPARATION

2.1 Glass-epoxy composite

Glass spheres of 2 mm dia. were arranged in a primitive (or simple) cubic lattice with a unit
cell of (2.54 mm)’ dimensions. An aluminum mold, 25.4 x 25.4 mm, was fabricated by drilling 1.5
mm dia. X 3 mm deep bores in an 8 X 8 square array. Each square measured 2.54 x 2.54 mm. The
desired negative image of the mold was produced by pouring an epoxy({7] into the mold. When
cured and detached the epoxy layer contained 3 mm long cylindrical protrusions; the space
between the protrusions is a lattice site. One sphere was manually placed in each of the
sixty-four lattice sites. The assemblage was inserted into a second mold, the epoxy was poured
and degassed for a long period of time to insure that all the trapped air was evacuated, and the
curing cycle was repeated. The detached sheet was machined on both sides to a thickness of
2.54 mm with glass spheres at the center of the thickness direction. Ten layers were produced in
this manner, a thin layer of the epoxy was used to join them together, the assemblage was
inserted into amother suitable mold, and the curing process was repeated under a suitably high

pressure. The faces of the specimen were lapped and polished to a 20 um finish. The overall
dimensions of the specimen were (25.4 mm)’.

This paper is dedicated to Prof. H. Kolsky on his sixty-sixth birthday.
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Table 1. Acoustic properties of the materials

[ c

1 2

Material (um/us)  (wm/ps) [ v (nepern?u-ﬂﬂz)
Epoxy 2,5 1.16 1.18 0.370 0.045
Glass 5.28 3.24 2.492 0.200 negligible
PMMA 2.63 1.32 1.16 0.334 0.02

Steel 5.9 3.22 7.8 0.292 negligible
Polystyrene 2.33 1.12 1.15 0.350 0.006

Table 2. Geometric properties of the composites

Inclusion Unit Cell d -
Composite Radius a (mm) (Dimensfions in mm) (mm) c(2)
Class/Epoxy 1 Primitive Cubic  2.54 25.6
(2.54%)
Primitive
Steel/PMMA 0.55 Tetragonal 2.63 15.2

(1.32 x 1.32 x 2.63)

The acoustic properties of the constituents are listed in Table 1, while the geometric
properties of the composite are given in Table 2. In Table 1, C, and C, are, respectively, the
longitudinal and shear wavespeeds, p is the density, » is the Poisson’s ratio, and m is given by
a = mn, where a is the attenuation and n is the frequency. In Table 2, 4 is the inclusion radius,
d is the unit cell dimension in the direction of wave propagation, and € is the volume fraction
of inclusions.

2.2 Steel—PMMA composite

It was considered desirable to obtain mutually corroborating results with two composites
with different acoustical properties. Epoxy was found to be a fairly attenuative material. To
reduce attenuation the matrix material was changed to PMMA [8]. Steel has substantially higher
stiffness and density as compared to glass; see Table 1. Therefore, the inclusion material was
changed to steel{12]. Thus the acoustical conditions obtaining in these two composites are
significantly different. Further, for reasons that will become clear later on, the inclusion
diameter was reduced from 2 mm to 1.1 mm. From symmetry considerations it is desirable to
use the primitive cubic unit cell. However, for the desired 2.63 mm dimension in the wave
propagation direction (the reason for this is given below), this would have resuited in a volume
fraction C =0.037. In the absence of any theoretical results even remotely similar to the
problem under consideration on the basis of which one could design the experiment, it appeared
that for this low C, the scattering effects may be too small to be detected with an acceptable
signal-to-noise ratio. This is the reason for choosing a primitive tetragonal unit cell of
dimensions 1.32x1.32x2.63mm with the largest dimension in the direction of wave pro-
pagation: then € = 0.152.

For the case of one-dimensional layered composites, Lee and Yang[18] have shown that the
stop bands correspond to the following geometric condition: twice the unit cell dimension
equals an integral multiple of the wavelength of the periodic wave in the composite. In terms of
a properly normalized wavenumber, ¢, this condition may be written as £ =m, where £=
(k) dim, m is a positive integer, d is the demension of the unit cell in the direction of wave
propagation, k is the wave number, the subscripts ( ), and ( ), denote, respectively, the
longitudinal and the shear disturbances, and ( ) denotes a composite property (ensemble
average). Only for design purposes we assumed that the corresponding criterion for a periodic
particulate composite is not too different from &= m. Further, it is desirable to have the
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(postulated) cut-off frequencies coincide with the center-frequencies of the crystals 0.25)0.5, 1.0
and 2.0 MHz). In order for the first cut-off to occur near 0.5 MHz, d should be 2.63 mm. (Same
reason led to d = 2.54 mm for the glass-epoxy composite.)

The mold consisted of a 31.75 mm (1.25 in.) steel cylinder with 0.5 mm dia. bores drilled in a
1.32x 1.32 mm square array, and two alignment pins near the edges. One steel ball was
manually placed in each of the 314 holes. The mold was placed in a Beuhler Specimen
Mounting Press[8}, the desired amount of PMMA powder was accurately weighed and poured
into the mold and subjected to a pressure of 35 MPa (5000 psi) at 190° C (375° F) for 10 min.
When the disk is removed from the mold, it has steel balls protruding from the surface (it also
has two alignment holes near the periphery). Hence, the disk was pressed against a flat surface
and the molding process was repeated. A photograph of a single disk is shown in Fig. 2. Several
disks were produced in this manner. The desired number of disks (5 or 10) were stacked
together, two steel pins were threaded through the alignment holes in each of the disks, and the
assemblage was taken through another cycle of molding process. The steel pins were left in
place. Since these pins are always outside the circular area illuminated by the ultrasonic beam,
they do not interfere with the measurement. The final lengths of the 5- and 10-layer specimens
are 13.15 and 26.3 mm respectively. An end view photograph of the 5-layer composite is also
shown in Fig. 2. From the top half of Fig. 2 it is apparent that there are some variations in the
interparticle distances within the layer. These are a result of the corresponding variations in the
steel mold. It is emphasized that these variations are systematically communicated to each of
the layers. Hence, in the direction of wave propagation (which is the important direction in the
present instance) the periodicity is exact, in the transverse directions, the periodicity suffers
from the variations under discussion.

The acoustic properties of the constituent materials are listed in Table 1 while the geometric
properties of the composite are given in Table 2.

Two random particulate composites were also prepared; these were identical to the two
periodic composites described above in all other respects. Exactly the same preparation procedure
was followed with only one difference. Instead of the periodic mold, a flat-surfaced mold was used,
the PMMA powder was poured first and the steel balls were sprinkled next. This minimized the
clustering of the steel balls. Also, upon falling the balls got trapped in the PMMA powder,
producing the desired randomness. We note that in the axial direction the composite is periodic. In
{9, 17] this potential source of error was systematically examined. Since specimens used in [9, 17]
were orthorhombic in shape, (C,) could be measured in three perpendicular directions and was
found to be nearly the same. In this work, due to the cylindrical shape of the specimen, it is not
possible to measure {C,) normal to the axis, hence, we are forced to assume that the composite
behaves in arandom manner. In view of the incoherent nature of the scattering of the incident wave
by the particles within each layer and the results of [9, 17], it appears to be a reasonable assumption.

3. EXPERIMENTAL PROCEDURES

3.1 Apparatus

Two types of ultrasonic through-transmission apparatuses were used in this investigation:
(1) water immersion apparatus and (2) direct contact apparatus. A detailed description of the
first may be found in [9]. The principal drawback of this technique is that a significant amount
of energy is lost at the pair of water-specimen interfaces, hence the need for the direct contact
apparatus described next.

A schematic of the direct contact apparatus is shown in Fig. 1. The experiment is initiated
by a pulse from the Time Mark Generator (Tek. TM 184) which simultaneously triggers a Pulse
Generator (Tek. PG 501) and the oscilloscope. Arbitrarily, this time is taken as ¢ = 0. The Pulse
Generator/Function Generator (either Tek. FG 502 or Wavetek Model 164)/RF Amplifier (EIN
Model A 150) combination is used to produce a toneburst of the desired duration (5-50 us),
frequency (0.2 < n = 2.5 MHz), and amplitude (about 300 V peak-to-peak). The electrical signal
is applied to one of a pair of accurately matched ultrasonic transducers which acts as the
transmitter, the other is used as the receiver. The nominal center-frequencies of these crystals
are 0.25, 0.5, 1.0 and 2.0 MHz. The last three were obtained from the vendors[10], the first ones
(0.25 MHz) were home-made. Here, X-cut ceramic (PZT-5) plates (25.4x254mm) were
obtained from[11]. The well-known problem of ringing was minimized by a heavy acoustic
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Fig. 1. A schematic of the apparatus.

loading of the back of the crystal; an epoxy saturated with fine tungsten powder was used for
this purpose. However, in the early stages of this work the domestic transducer suffered from a
problem not encountered in the commercially made transducers. The problem stems from the
fact that the attenuation in the tungsten/epoxy backing material (which may be viewed as a
random particulate composite) is rather small at 0.25 MHz. In the case of the receiver (the same
argument applies to the transmitter), when the incident toneburst in polystyrene strikes the
crystal, a significant fraction of the energy is propagated into the backing. If the attenuation had
been sufficiently large, this energy would have been completely absorbed in the backing
material. As it is, a part of this energy is reflected at the rear face of the backing, reappears at
the crystal, and interferes with the measurement. This problem was circumvented by using an
unusually long (70 mm) backing. The twice-transit-time in the backing was found to be about 60
us. Since the duration of a typical toneburst at these frequencies is about 50 ws, measurements
could be made prior to the arrival of this spurious reflection.

A pair of polystyrene delay rods (50.8 X 50.8 x 25 to 100 mm long) was inserted between the
specimen and the transducers. Since the acoustic impedance of the polystyrene and PMMA is
very nearly equal, the reflection at a polystyrene/PMMA interface is negligibly small, and all of
the wave is transmitted, see Table 1. A thin layer of castor oil was used to bond the transducers
to the delay rods. In order to obtain a reproducible layer thickness from one test to another, the
transducer holders were axially compressed to a constant load of about 100 N (20 1bf) with the
help of a spring-loaded screw mechanism. The coupling between the delay rods and the
specimen, on the other hand, was desired to be acoustically rigid; a low melting compound (65°
C), namely, phenylsalicylate was used for this purpose. Its use permitted quick and easy
debonding and rebonding.

The signal received through the composite is monitored on a Tek. 7704 A oscilloscope
equipped with a P7001 Processor (A/D converter), two T7A16A amplifiers, a
7B80 Time Base Unit and a 7B8S Delaying Time Base Unit, Whenever it is desired to carry out
a spectroscopic analysis of the data, the digitized waveform is transferred from the P7001
Processor to a desk top microprocessor (Tek. 4051 smart graphics terminal). The upper trace of
the oscilloscope is triggered at time ¢ = 0; the lower trace, on which the received waveform is
displayed, is triggered after a suitable time delay and swept at a very fast rate (typically 100
ns/division) to permit a detailed examination of the waveform. The 7B85 is used for this
purpose and the delay time is obtained to an accuracy of 10 ns. Whenever higher accuracy is
desired, the time delay is generated externally and measured with the help of a Universal
Counter/Timer (Teletronix DC 505 A) which has an accuracy of about 5 ns; this path is shown
in dotted lines. To obtain a continuous display, the experiment is repeated at a rate of about |
KHz. Finally, depending upon convenience, the two apparatuses were used interchangeably.
Frequently, both apparatuses were used for the same measurement to produce redundant data
that were checked against each other.
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3.2 Measurement techniques

Toneburst method. In this method the phase velocity of longitudinal wave, (C)) is deter-
mined by measuring the flight time of a toneburst through two specimens of known thicknesses;
typical incident and transmitted tonebursts are shown in Figs. 8 and 9. Since we are concerned
with phase, rather than group, velocity, all measurements are made with a reference peak near
the middle of the toneburst which typically contains twenty cycles. Let ¢ be the delay time
required to make the reference peak coincide with (say) the center graticule of the screen. Let
t, and t, be the delay times and A, and A, be the amplitudes of the received signal at the
reference peak for specimens of thickness W, and W,, respectively. Then

(C)=(W,— W)l(t,— 1) n

and

(af) = In(A,/ AW, - W)). @

Note that identical delay rods are used for both specimens. Occasionally, when the frequency is
high and, therefore, the attenuation is large, the received signal through the thicker specimen
may be too small to be measured satisfactorily. When this happens only one specimen is used
for {C,) measurement. The thicker specimen is replaced by the pair of polystyrene delay rods
joined together with a phenylsalicylate bond. The attenuation, however, is always measured by
using two specimens.

This procedure of obtaining (C,) and () through a comparative measurement eliminates the
transit time through the delay rods as well as the errors due to the following sources: (1)
inherent time delays in various pieces of electronic equipment; (2) transit time through castor
oil layers and phenylsalicylate bonds; and (3) the transducer characteristics.

Frequently, redundant measurements of (C,) were obtained by treating all the peaks of a
toneburst as the reference peaks. Expectedly, (C,) fluctuated somewhat when the reference
peak was near the head of the pulse. However, (C,) rapidly attained a constant value (within the
1% error of measurement) as the peak number of the reference peak increased, i.e. as the
reference peak became increasingly farther from the head of the pulse. This reassured us that
we are measuring the phase rather than the group velocity.

Error analysis. A systematic error analysis of the measurement procedures was reported in
[9] for the water-immersion apparatus, and in [25]) for the direct-contact as well as the
water-immersion apparatus. A detailed discussion of some of the modelling errors may be
found in [17]. Here, we merely report the results of these calculations. The measurement error
in (C,) is estimated to be 1%. It is more difficult to assign a single number to the error estimate
in {a); see [27). It ranged from about 1% for the “best” case to about 10% for the “worst” case.
We make the conservative claim that the measurements are accurate to about 15%. These
estimates were amply borne out by the reproducibility of the experimental results.

Ultrasonic spectroscopy. The toneburst method is quite accurate but also very time
consuming. A more efficient though somewhat less accurate method is that of ultrasonic
spectroscopy. Unlike the toneburst method where a nearly monochromatic signal is applied to
the transmitter, here a short duration (200 ns-2 us) spike is used. The resulting P-wave has a
broad range of frequencies. The propagation of this transient waveform through the composite
is studied in terms of its constituent Fourier components. For two specimens of thickness W,
and W,, let a,(t) and ay(t) be the received time-domain signals, and ¢, and 1, be the delay times,
respectively. Let A,* and A,* be the Fourier transforms of a,(f) and ay(¢), respectively. Let
A =|A?*, A;=|A,*], ¢,=phase of A*, §,=phase of A,*, $=¢,—¢,, and t=1,—1, A
straightforward calculation yields

(a(w)) = In(A/AI(W, — W), )

and

(Ci(@)) = (W, - W)I(t + ¢lw), “)
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Fig. 2. Two photographic views of the steel/PMMA periodic particulate composite. The direction of wave
propagation is along the axis of the cylinder. Unit cell: 1.32x 1.32x 2,63 mm.

where w is the circular frequency; w = 27n. With reference to Fig. 1, the transient waveform
(a)(t) or ax(t)) is digitized by P7001 Processor, the data is transferred to the Tek. 4051 Graphics
Terminal where a standard FFT routine is used to calculate the Fourier transforms (Tek. 4051
RO8 SPS Rom Pack #2) and {(a) is computed by eqn (3). Although this method has in the
past been successfully used to measure (C,) for homogencous materials (aluminum, polys-
tyrene, steel, etc.)[24], and random particulate composite[25], which, in the aggregate, behave
in an isotropic homogeneous manner at long wavelengths, it could not be used for the present
case of a periodic composite and the reason for this is considered worth mentioning. The
value of ¢ that can be obtained from the Fourier transform is non-unique up to integral
multiples of 2. If it is known a priori that the dispersion curve, (C,) vs , is continuous (e.g.
homogeneous materials), then the non-uniqueness in ¢ presents no problem. One starts with
some frequency where the behavior of (C\(w)) is known (e.g. the long-wavelength limit for the
case of random particulate composites[25]) and follows (C,) as w is gradually varied. If the
value of ¢ computed by the FFT takes a jump of an integral muitiple of 27, so does (C,). Since
{Ci(w)) is known a priori to be continuous, the jump in (C,) can be eliminated by removing
the spurious multiples of 27 from ¢. If, on the other hand, it is known a priori that the
dispersion curve is discontinuous, as is the case here (see Figs. 3-5), then this procedure cannot
be used with confidence. Across the discontinuity in {C,), the phase ¢ will also suffer from a
corresponding jump discontinuity, see eqn (4). (In our experiments, this jump in ¢ was found to
be about 30 radians.) Since ¢, as computed by the FFT, is non-unique up to an integral multiple
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of 2m, the jump in ¢ (corresponding to the jump in (C,)) cannot be uniquely determined. Of
course, with experience and by examining the limits of the two dispersion branches on either
side of the jump (Figs. 3 and 4), one can make a fairly good guess at the integral multiples of 27
missing from the phase information. However, such a procedure is at best a fudge device and
was deemed unacceptable, particularly because the main objective of this paper is the
determination of the jump in (C,) across a no-pass band. Therefore, all the (C,) data reported in
this work was obtained with the toneburst method described in Section 3.2. The attenuation (a),
on the other hand, was measured by using both techniques, wherever possible.

4, RESULTS

4.1 Properties of the constituents

Several specimens of epoxy, PMMA, and polystyrene were prepared with thickness ranging
from about 15-100 mm. C, and C, were measured over the frequency range of 0.25-5 MHz at
room temperature, and were found to be frequency-independent, within the errors of
measurement. Since thicker specimens were used, these measurements are accurate to about
+0.5%. The attenuation a was found to increase linearly with n: « = mn. The measured values
of the material properties are listed in Table 1. The properties for glass[20} and steel[12] are
taken from the manufacturer's specifications, and are assumed to be frequency-independent.

It is well-known that the acoustic properties of polymeric materials are sensitive to
temperature. To minimize the effect of this source of error, all measurements were made at the
same temperature of 22 + 1°C. For PMMA, a 1°C change in temperature will cause (roughly) no
more than 0.1% change in C, [26]; this may be considered negligibly small in view of the 1%
measurement error. Next, the longitudinal attenuation of PMMA at 22°C and 1 MHz frequency
is 0.02 nepers/mm, see Table 1. A 1°C change in temperature will cause (roughly) a 0.00035
nepers/mm change in the attenuation which may be safely neglected.

4.2 Velocity measurements

Throughout this work, wave propagation was made to occur along one of the symmetry axes.
For glass/epoxy composite, with a primitive cubic unit cell, all three axes are equivalent. For
the steel/PMMA composite, with a primitive tetragonal unit cell, the direction of propagation is
along the larger dimension, d = 2.63 mm.

We introduce a normalized frequency =k d/m(=2d/A,=2dn/C,), where A is the
wavelength. Furthermore, the unprimed and primed quantities, ( )and ( ), refer to the matrix
and the inclusion properties, respectively. For example, A, is the longitudinal wavelength in the
matrix material. Physically, when Q = 1, the wavelength in the matrix equals twice the length of
the unit cell. The toneburst method was used for velocity measurements. The phase velocity as
a function of n (or Q) is shown in Figs. 3 and 4. Now, for a layered composite a stop band
implies the range of frequencies over which the composite completely reflects all of the incident
wave and there is no transmission. For the periodic particulate composites no such frequencies
were found; a finite signal was received at all frequencies. Therefore, in the context of the
present experiments the expression “stop band” will be used to denote that range of frequen-
cies over which velocity could not be measured (see Section 4.6) and across which (C,) takes a
finite positive jump with increasing frequency (n); the latter is a characteristic of both layered
and fibrous composites.

The glass/epoxy composite exhibits one stop band and two pass bands; the steel/PMMA
composite reveals two stop bands and three pass bands. Consistent with the earlier obser-
vations for layered[3, 4] and fibrous[5, 6] composites, (C,) decreases with ) in each pass band.

A solution for the case of a periodic particulate composite has not yet been reported.
However, an exact solution for the case of periodic wave propagation through periodic layered
composite is available[{1-3]. It has been shown that at the stop band (or cut-off), the effective
wavenumber in the composite satisfies the condition ¢ = (k,)d/m = m, where m is a positive
integer. This condition is approximately satisfied by the stop bands observed in Figs. 3 and 4
(this will be explained in the next subsection).

Within the range of frequencies tested, namely, 0.3 = n = 2.05 MHz for glass composite and
0.17 = n = 2.3 MHz for the steel composite, the criterion £ = m predicts additional second and
third stop bands at n=1.4 MHz (£=2) and n =2.0 MHz (¢ =3), respectively, for the glass
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composite; for the steel composite additional stop bands at » = 1.5 MHz (§=3) and n =19
MHz (£ = 4) are predicted; none of these bands is observed. In fact, (C,) varies continuously
with n across the anticipated stopbands.

The following is offered as a plausible explanation for the absence of the higher stop bands.
In addition to d—the length of the unit cell in the direction of wave propagation—there is a
second characteristic length associated with this problem, namely, the radius of the spherical
inclusion, a. Owing to its simple geometry, an elastic sphere embedded in an elastic matrix is
capable of sustaining resonances. These have been studied by Flax and Uberall[13] who
showed that for the case of an iron sphere in an aluminum matrix, these resonances occur when
k,a = 0(1). Another manifestation of the particle resonance is the existence of peaks in the yy
vs k,a curves, where yy is the total scattering cross-section of a sphere; see Appendix H
of [14]. Here again the effect is pronounced when k,a = 0(1). In their experiments with random
particulate composites (i.e. an aggregate of elastic scatterers) consisting of lead spheres in an
epoxy matrix, Kinra et al.[15] showed that the influence of particle resonance on (C,) was
significant when k,a = 0(1). Similarly, the influence of particle resonance on the attenuation,
(a), has also been recorded experimentally[28]. Thus it is fairly well established that when the
wavelength becomes comparable to the inclusion size, i.e. ka =0(1), particle resonances are
excited, and that this phenomenon measurably affects the wave propagation behavior of the
composite. For the present case of the glass/epoxy composite, k,a = 2.474 n; see Tables 1 and
2. The range of frequencies tested is 0.3 = n = 2.05 MHz and, therefore, k;a varies in the range
0.75 = k,a=5. The point is that k,a is in the correct range for the excitation of particle
resonances to occur. We now postulate that these resonances are, in fact, excited in our
experiments. Furthermore, for the case of a layered composite, Lee and Yang[18] have shown
that at the frequencies corresponding to the ends of the stop bands, *...the Floquet
waves . . . are simply normal modes of oscillation of the system, all elements moving in phase.
There is no propagation, and in conformity with this circumstance, the group velocity at the
ends of the bands. .. is zero.” Thus there are two resonance effects in the present experiments:
the lattice resonances and the particle resonances. We now offer the conjecture that for the
glass/epoxy composite under consideration in the first stop band (m = 1, wavelength is 2d and,
therefore, large compared to a) the lattice resonance effects dominate the particle resonance
effects. On the other hand, in the second stop band (m =2, wavelength is d and hence
comparable to a), the reverse is true, i.e. the particle resonance effects dominate the lattice
resonance effects, thereby masking the second stop band.

We now mention a specific resonance mode which may be responsible for masking the
higher stop bands: this mode has to do with the rigid-body rectilinear translation of a single
sphere in an unbounded matrix[29]. Kinra and Anand[17} have experimentally studied wave
propagation through a glass-epoxy (same constituents as used in this investigation) random
particulate composite. The wave propagation was found to occur along two separate branches:
at long-wavelengths along the acoustical branch; and at short-wavelengths along the optical
branch. Following the analysis of Moon and Mow[29), they attributed the transition to the
rigid-body resonance mode mentioned above. This transition occurred in the range 2.5 s k,a <
3.75 (approximate empirical limits), i.e. 2= Q =< 3. Taking (C\)/C, = 1.4 over 2= =3 (Fig. 3).
the transition occurs over 1.4 < £52.1, ie. if the spheres had been distributed in a random
homogeneous manner, the wave propagation would have occurred along the optical branch for
£=2. This may very well be the reason for not observing the second (¢ =2) and the third
(£ = 3) stop bands.

Another plausible reason is the matrix attenuation. It is well known that the attenuation of
these polymers, when expressed as nepers/wavelength, is nearly constant. At a stop band,
&= m, there are m/2 wavelengths in each unit cell. Since the phenomenon of cut-off is due to
interference of multiply-reflected waves, the matrix attenuation will become more important at
higher stop bands. However, in view of the rather small matrix attenuation (see Table 1), it is
believed that this is less likely a reason than the particle resonance.

The glass/epoxy composite was tested first. It is for the purpose of testing the validity of the
plausible explanations given above that the steel/PMMA composite was designed and tested
next. The diameter of the steel spheres was chosen to be 1.1 mm—roughly half of the glass
spheres. For glass a/d = 0.394, for steel a/d = 0.209. Thus, for the same value of { in both
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specimens, k,a is roughly one-half for the steel specimen. The excitation of the particle
resonance—if it is indeed the reason for masking the higher stop bands in the glass composite—
should be postponed along the () axis for the steel composite, thereby revealing additional stop
bands. Furthermore, for sufficiently high values of Q (hence, of k,a), the higher pass bands
should be masked even in the steel specimen. Both of these conjectures are borne out by the
data in Fig. 4. For the steel specimen k,a=1314 n, 0.17=n <23 MHz is the range of
frequencies tested, hence 0.22=k,a=3.02 (for the glass specimen 0.75 = k,a<5.0). The
steel/PMMA data reveal one extra stop band, corresponding to ¢ =2. Two higher stop bands
corresponding to £=3 (n=1.5 MHz, k,a=197) and ¢ =4 (n=19MHz, k,a =2.5) are not
observed. These observations support our conjecture that the particle resonance is the reason
for not observing the higher stop bands.

4.3 Frequency-wavenumber plot

When the dispersion data for the periodic steel composite is recast in the form of a
normalized frequency vs a normalized wavenumber plot, it reveals an interesting phenomenon
which is absent in the case of a periodic layered composite. First, we briefly summarize the
corresponding results obtained with a layered composite. With reference to Figs. 1-3 of Ref. [3],
the frequency-wavenumber plot for a layered composite has the following characteristics.
Along the ¢-axis the first branch of wave propagation (frequently called the acoustical branch)
terminates at £ = 1. The second branch (frequently called the first optical branch) starts at £ =1
and terminates at £ = 2, and so on. The important point is that along the £-axis the two branches
do not overlap. In the following we show that the corresponding branches for a periodic
particulate composite do overlap.

Q) vs ¢ for the periodic steel composite is shown in Fig. 5. The first and the second pass
bands overlap over 1.1 < £<1.25; the second and the third pass bands overlap over 1.5< £<
2.4. The interesting conclusion is that the same effective wavenumber (or wavelength) can be
produced by two different frequencies. The first and the second stop bands satisfy the condition
£=1and ¢ =2 (which are exact only for a layered composite) only in an approximate sense. It
has been previously suggested[1, 3] that for the layered composites the {}-£ plot in various pass
bands should lie along a single straight line. Herrmann et al.[23] showed analytically that this is
incorrect; in Fig. 5 one may see an experimental verification of the preceding statement for the
case of particulate composites. In particular, at low () the data approaches {} = 0.8 ¢ whereas at
high Q, it approaches ) =0.96 £ (see also Fig. 4).

When the glass/epoxy data is recast into a similar -¢ plot (which has been omitted for
brevity) the first stop band also satisfies the condition £ =1 only approximately. At the two
ends of the stop band n = 0.6 MHz, £ = 1.06; and n = 0.8 MHz, £ = 1.10. The two pass bands do
not overlap in this case. Finally, the dispersion curve for the pure matrix would be the straight
line ) = &

Having observed that for particulate composites the pass bands overlap, we reexamined the
experimental resuits of Sutheriand and Lingle[5] to see if the same phenomenon also exists in
fibrous composites. Although they failed to notice it, we will show in the following that their
pass bands also overlap. They considered harmonic wave propagation (normal to the fibers) in a
periodic composite consisting of tungsten fibers in an aluminum matrix. Their data for the case
of 2.2% volume fraction of tungsten—when properly normalized and recast into an ()-£ plot—is
also shown in Fig. 5. Note that for clarity the data have been shifted by 3.0 along the {)-axis.
Consistent with our results, the two pass bands overlap in 0.39 = £ =0.85. Furthermore, the
condition £=1 for the first stop band (in a layered composite) is satisfied only in an
approximate sense. The first pass band is: 0.13 =0 =0.72, 0.14 = ¢ = 0.85; the second pass band
is: 0.81 0 =1.74, 039 £=1.77. For the case of 22.1% volume fraction of tungsten fibers
they observed only the first band. Hence, a comparison could not be made.

4.4 Comparison of random and periodic dispersion data

As described in Section 3, Experimental Procedures, two steel PMMA composite specimens
were fabricated in which the spheres were distributed in a random homogeneous manner,
otherwise these specimens were exactly identical to the periodic specimens in all respects:
volume fraction, inclusion radius, and overall size. The objective was that a comparison of
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equivalent periodic and random composites would clearly bring out the influence of lattice
periodicity on the overall wave propagation behavior. The dispersion data for the random case
is also plotted in Fig. 4. In the following the subscripts ( ), and ( )g will be used to denote
periodic and random composites, respectively. At low frequencies (Cyy) agrees remarkably well
with the results of a long-wavelength analysis by Datta[16] which predicts (Cyz)/C, = 0.83. This
is indicated by an arrow on the (C,)/C, axis. This analysis rests on the assumption that ka <1,
where k is any one of the four possible wavenumbers ki, k,, k', and &, and 4 is the inclusion
radius. It is also interesting to note that in the low frequency limit (C,,) and (Cz) appear to be
converging to nearly equal limits. Heuristically, when the wavelength becomes very large
compared to the scale of the microstructure, the difference in the wave motion for the two
cases should become small. As n increases the two dispersion curves diverge rapidly and
substantially. This is one clear manifestation of the lattice periodicity. Furthermore, {Cip)
registers three fairly discrete increases at 0.45 MHz (k,a = 0.6), 0.9 MHz (k,a = 1.2) and 1.15
MHz (k,a=1.5). For n>12 MHz, (C,z) decreases slowly and appears to reach a high
frequency limit of about 1.0 which is about 20% larger than its low frequency limit. In going
from low frequency regime to high frequency regime, an increase in {C,) in random particulate
composites has also been observed previously for glass/epoxy{17] and lead/epoxy[15] com-
posites, where it was conjectured that this increase is due to the excitation of the resonances of
the spherical inclusions. Another interesting observation is that at high frequencies the wave
propagation behavior of the random and the periodic composites becomes, once again, nearly
identical; (Cjp) and (Cir) agree within a few percent for all n > 1.2 MHz (k,a > 1.58); the error
in each measurement is 1%. There are a few gaps in the (C,z) data, a discussion of the reasons
for this is given in Section 4.6.

4.5 Attenuation measurements

In this paragraph we summarize some of the results concerning attenuation obtained by
exact analysis of harmonic wave propagation through periodic layered composites with the
direction of wave propagation normal to the layering[18-23]. These results provided the
motivation for the attenuation measurements. By examining the Floquet waves, it has been
shown independently by Lee and Yang[18] and by Delph et al.[22] that when the frequency
belongs to a pass band (Brilloin zone), the wavenumber is real, ie. (ap)=0. When the
frequency belongs to a stop band, the wavenumber is purely imaginary, i.e. Floquet waves
cannot be propagated. A lucid description of the associated physical events has been given by
Lee[21]; here, for brevity, we will take this<ondition to mean that {ap) = ®. At the ends of the
Brilloin zones (£ = m) the wavenumber becomes complex, implying attenuated waves. Now
there are two factors which distinguish the theory from the present experiments. One, the
theories treat a laminated medium; the experiments are concerned with particulate composites.
Two, it is difficult to estimate the extent to which Floquet waves (infinite wave in an infinite
medium) are fully established in a laboratory specimen with a finite number of layers (modelling
errors). Therefore, (ap) may be expected to be greater than zero at all frequencies due to
energy scattered away from the direction of wave propagation, and due to matrix attenuation.
The éxperiments were conducted with the expectation that {ap) will be relatively small in the
pass bands and will go through rather sharp peaks in the stop bands. As will be seen, the
measurements are significantly different from these expected resuits.

Turning to the case of random composites, the attenuation is expected to be greater than
zero at all frequencies due to the fact that the incident wave is continuously scattered into
incoherent waves[19].

The attention is first drawn to the (ay) curve in Fig. 6. This is characterized by a series of
well defined peaks. The appearance of this curve is remarkably similar to the yy vs. k,a curves
for a single spherical scatterer, see Appendix H of [14). Since the radius of the sphere, g, is the
only characteristic dimension associated with a random composite, the existence of these peaks
can only be attributed to the excitation of the particle resonances. (In [9] the average
inter-particle distance was treated as a second characteristic dimension of the problem.
However, it was found to have no influence on either (C,} or (a).) The frequency above which
resonance effects become important is n =0.5 MHz (approx.), i.e. k;a =0.7. This is in good
agreement with the analytical predictions where the first peak in yy appears around k,a =0.5
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Fig. 6. Attenuation vs. Frequency in periodic (upper) and random (fower) steel/PMMA composites.

for a stainless steel sphere in magnesium[14] and an iron sphere in aluminum{13)]. (Since yy vs
kia results for steel/PMMA are not available in the literature, a direct comparison is not
possible and the foregoing comparison is made only in an approximate sense.) It is well-known
that at very low values of n{or k;a), yy increases very rapidly with ka: as (k,q)* in the
Rayleigh limit; and as (k;a)* at moderately small frequencies[19]. Some evidence of this is seen
in the {(aj) curve at low frequencies, 0 = n £0.3 MHz. In particular {az) becomes immeasurably
small below 0.2 MHz. For larger n, 0.3s n =0.6 MHz or 0.4 s k,a 08, {ag) may be seen to
increase almost linearly with #. Finally, a comparison of {ag} in Fig. 6 with (Cz) in Fig. 4
reveals that the attenuation is affected much more by particle resonance than is velocity.

Attention is now drawn to {ap) in Fig. 6. At low frequencies, n <0.4 MHz, (ap)={ag).
However, for n > 0.4 MHz (the first stop band is 0.37 < n < 0.6 MHz), the similarity disappears.
A general comparison of the two curves reveals the effect of lattice periodicity on (ap) (the
particle resonance effects are common to both). Expectedly, {ay) is generally larger than (ap);
this is particularly true at the high end of the frequency range where {a,) becomes small (=0.1
nepers/mm). The most remarkable feature, however, is that at about 1.1 MHz (@ = 2.2, third
pass band, see Fig. 5) {ap) nearly vanishes {cf. {ag) = 0.25 nepers/mm at the same frequency).
Since this was a rather unexpected result, this data was checked repeatedly using the
water-immersion apparatus as well as the direct-contact apparatus, and using the toneburst as
well as the ultrasonic spectroscopy methods of measurement. Essentially the same results were
obtained. For some inexplicable reason, the composite becomes nearly transparent at this
particular frequency. A connection between the peaks of the attenuation curve and the stop
band criterion, £=m, could not be established. This is probably because the {ap) curve is
simultaneously recording the effect of lattice periodicity and the particle resonances. That (ap)
could be measured continuously across the stop bands is due to the fact that ultrasonic
spectroscopy could be used (see Section 3, Experimental Procedures). Note that even across
the stop bands {ap) is not very large. Analytically, in a periodic layered composite, at cut-off,
the incident wave is completely reflected, ie. {ap)=. This brings out another important
difference in the behavior of layered and particulate composites.

The attenuation data for the glass composite is shown in Fig. 7. The first peak occurs at 0.63
MHz (k,a = 1.56, £ = 1.11). This frequency is at the beginning of the first stop band; see Fig. 3.
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However, the second peak occurs at 1.06 MHz and there is no jump in (C,) at that frequency.
Furthermore, at the frequencies corresponding to the anticipated second and third stop bands,
namely, 14 MHz (£=2) and 2.0 MHz (£=13), there are no peaks in the attenuation data.
Therefore, as in the case of the steel composite, a connection between the attenuation peaks
and the stop band criterion (¢ = m) cannot be established here as well.

4.6 Time-domain data

In this section the time-domain data for both the periodic and the random steel/PMMA
composites is presented. The water immersion apparatus was used for Figs. 8(a); the direct
contact apparatus was used for Figs. 8(d-g) and Figs. %(a-d). In each oscillograph, the lower
trace is the incident pulse (through water or through a block of polystyrene), the upper trace is
the corresponding signal received through a composite. A critical requirement of the toneburst
method is that, starting with the head of the pulse, one should be able to make an unequivocal
one-to-one correspondence between the peaks of the incident and the refracted tonebursts. (In
the following, for brevity, the word “correspondence” will be used to imply the preceding
sentence.) When this correspondence breaks down, (C,) cannot be measured.

Periodic composites

First pass band (0.17 = n = 0.37 MHz). The frequency n = 0.3 MHz is arbitrarily selected as
a typical frequency in the first pass band. Data traces are shown in Fig. 8(a). The one-to-one
correspondence is obvious and (C,) could be measured.

First stop band (0.37 < n < 0.6 MHz). For n =0.5 MHz ({} = 1), the traces are shown in Fig.
8(b). The incident toneburst (lower) has six “major™ peaks aligned with graticules 2-7, the
transmitted toneburst (upper) has sevem major peaks in the same time interval. The “cor-
respondence” breaks down and (C;) cannot be measured. Note also a severe harmonic
distortion.

Second pass band (0.6 = n = 0.9 MHz). The traces at 0.67 MHz are shown in Fig. 8(c). Even
though there is some distortion near the head of the pulse (which is to be expected for transient
wave propagation through a highly dispersive medium) the “correspondence” is possible and
{C,) could be measured.

Second stop band (0.90 < n <0.97 MHz). Here, we have purposely selected a “border line”
case: at 0.9 MHz, (C,) could be measured, at 0.91 MHz it could not, and the corresponding
traces are shown in Fig. 8(d). The reasons are the same as in first stop band (see Fig. 8(b), 0.5
MHz). In particular, between the second and the eighth graticule inclusive, there are twelve and
fourteen peaks in the incident and the transmitted waveform, respectively.

Third pass band (0.97 =n=2.3 MHz). The traces at 1.18 MHz are shown in Fig. 8(e). The
remarks concerning the second pass band (0.67 MHz, Fig. 8c) also apply here.

(Anticipated) third and fourth stop bands. In Section 4.2 it was mentioned that two higher
stop bands anticipated at 1.5 MHz (¢ = 3) and 1.9 MHz (¢ = 4) were not observed; instead, {C,)
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Fig. 8. Time domain data for the petiodic steel/PMMA composite. Lower: incident wave. Upper: transmitted

wave. (a) First pass band. n=0.3 MHz, £=091. (b) First stop band. a = 0.5 MHz. (c) Second pass band.

a =067 MHz, § = 1.37.(d) Second stop band. # = 0.91 MHz. (¢) Third pass band. n = 1.18 MH2, £§=2.15.()

Third stop band, anticipated at # = 1.5 MHz, £ =3 was not observed. (g) Fourth stop band, anticipated at
n =20 MHz, £ =4 was not abserved.

varied continuously across these frequencies (see Figs. 4 and 5). The time~domain data at 135
and 2.0 MHz are shown in Figs. 8(f, g), respectively. In Fig. 8(f), the transmitted wave does take
a long period of time before steady state is established, however, there is no difficulty in
establishing the “correspondence”. The reference peak was chosen somewhere past the
twentieth peak. The same remarks-apply to Fig. 8(g).
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Fig. 9. Time domain data for the random steel/PMMA composite. Lower: Incident wave. Upper: Transmitted
wave. (a) # =0.3 MHz, k;a = 0.39 (Long-wavelength regime). (b) n = 0.8 MHz, k;a = 1.05. (c) n = 0.9 MHz,
k,a = 1.18. (C,) cannot be measured. (d) » = 1.05 MHz, £ a = 1.38. (C}) can be measured.

We now point to another interesting phenomenon in periodic particulate composites. With
reference to Figs. 8(b, c, €), note that that the composite continues to oscillate (much like an
underdamped oscillator) long after the excitation signal stops. Also in Figs. 8(c, e), the
composite takes several cycles before it builds up to its steady state amplitude. This
phenomenon occurred to varying degrees at all frequencies tested. These phenomena strongly
indicate that there is some mechanism of storing energy in the composite. When the toneburst
strikes the quiescent composite, energy is extracted from the toneburst (hence a gradual
build-up of amplitude); once toneburst leaves the composite, the stored energy is slowly leaked
back into the propagating wave (hence a gradual amplitude decay). Now, Lee and Yang(18], in
their work with passage of Floquet waves in periodic layered composites, have shown that at the
ends of a stop band, the wave motion can be interpreted in terms of the normal modes of
oscillations of a unit cell. It appears that these normal modes provide the necessary mechanism for
energy storage.

Random composites

The time-domain data for the steel/PMMA composite are shown in Fig. 9. In Fig. %a), n = 0.3
MHz, kja=0.39<1, ie. this frequency belongs to the long-wavelength regime. The *“‘cor-
respondence” is obvious. Note that unlike the periodic composite, here the transmitted pulse
decays rapidly after the excitation stops. The data at n = 0.8 MHz, k,a = 1.05 are shown in Fig.
9(b). Although there is a slight distortion, it is still possible to measure (C,). However, at 0.9
MHz (k,a = 1.18, Fig. 9c) it is no longer possible to measure {C,) due to severe distortion of the
transmitted wave: this is the reason for the gaps in (C,z) in Fig. 4. In Fig. 9%(d), n = 1.05 MHz
(kya = 1.38) (C)) can, once again, be measured. Note that the oscillations of the composite after
the excitation signal stops continue to increase in amplitude as k,a increases. For the case of
periodic composites, this phenomenon was attributed to the normal modes of oscillations of a
unit cell. For the case of random composites, it is attributed to the normal modes of vibrations
of the spherical inclusions.

Finally, the numerical values of the data presented in this paper are included in the Appendix.
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5. DISCUSSION

In the preceding section a number of important differences in the mechanical behavior of
periodic layered and periodic particulate composites were noted. In this section we.include a
brief discussion to put these differences in a perspective. Consider a plane P-wave incident
upon a (one-dimensional) layered composite. Both the reflection and the refraction of this wave
at each of the interfaces will be a plane longitudinal wave. Now consider the same wave
incident upon a (three-dimensional) particulate composite. The scattered field is neither plane
nor only longitudinal; it consists of both P- and S-waves propagated along spherical wave-
fronts.

Next, consider the stop bands (£ =m) of a layered composite. Lee and Yang{i8] have
shown that the wave motion can be interpreted in terms of the normal modes of oscillation of 2
unit cell, there is no propagation, and the group velocity is zero. It is easy to show that this is
not true for a periodic particulate composite. Consider the case when the incident wavelength is
very small compared to both a and d (often called the optical limit). For the present case of a
stiff inclusion in a compliant matrix, the cross-sectional area occupied by the spheres is
essentially opaque to the incident wave, the remainder of the area is essentially transparent.
Due to periodicity, the spheres in the interior of the composite lie in the shadow of the spheres
in the first layer. Hence, there exists a bundle of rays along the symmetry axis such that the ray
does not intersect any of the (acoustically opaque) inclusions, i.e. it lies entirely in the
(acoustically transparent) matrix. Therefore, even when the stop-band condition, £=m, is
satisfied there will be some energy propagated from a transmitter to a receiver cemented to the
two faces of the composite along this bundle of rays. Therefore, the group velocity will not be
zero.

Finally, the resonance of a particle, which is a three-dimensional phenomenon, has no direct
equivalence in the layered composite.

6. CONCLUSIONS

An important property of the periodic heterogeneous materials is the phenomenon of pass
bands and stop bands. This phenomenon has been experimentally studied for the case of
periodic particulate (i.e. three-dimensional) composites. Two pass bands and one stop band
were observed for the glass/epoxy composite, whereas three pass bands and two stop bands
were found for the steel/PMMA case. Along the frequency axis, as a stop band is approached
from left, the phase velocity decreases; conversely, as the stop band is approached from right,
the velocity increases; across the stop band, velocity takes a large positive jump with increasing
frequency. In both composites, at higher frequencies where the wavelength becomes compar-
able to the radius of the spherical inclusion (k;a > 1), the higher stop bands are not observed and
the dispersion curve becomes continuous; this is a rather surprising result of the present
experiments. We have conjectured that this is probably due to the excitation of resonances of
the spherical inclusions which, at higher frequencies, tend to dominate the resonances of the
unit cell. Another surprising result is that unlike the case of layered (one-dimensional) periodic
composites, the pass bands for a particulate composite overlap along the wave number axis.
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APPENDIX
Numerical values of data*
1. Glass/Epoxy Periodic Composite
{continued)

n <Cl>/C1 n <§p> n <?P>
0.296 1.30 0.300 0.05 1.100 0.26
0.350 1.27 0.325 0.05 1.125 0.21
0,408 1.23 0.351 0.05 1.154 0.20
0.457 1.19 0.375 0.05 1,175 0.17
0.507 1.18 0.400 0.05 1.174 0.16
0.557 1.18 0.425 0.06 1.203 0.16
0.580 1.15 0.450 0.08 1.252 0.15
0.601 1.14 0.476 0.10 1,272 0.15
0.807 1.45 0.486 0.10 1.301 0.15
0.833 1.46 0.500 0.10 1.330 0.15
0.858 1.45 0.526 0.10 1.364 G.15
0.906 1.43 04.550 0.10 1.400 0.15
0.958 1.41 0.573 .10 1.430 0.20
1.003 1.41 0.600 0.12 1.472 0.20
1.101 1.41 0.625 0.18 1.510 0.19
1.200 1.39 0.635 0.15 1.539 0.20
1,304 1.38 0.650 0.13 1.603 0.20
1.400 1.39 0.671 0.13 1.630 0.20
1.502 1.38 0.700 0.14 1.664 0.21
1.552 1.36 0.725 0.14 1.703 0.22
1.606 1.35 0.751 0.15 X.747 0.23
1.706 1.34 0.775 0.15 1.773 0.23
1.851 1.33 0.8G0 0.16 1.815 .23
1.903 1.33 0.826 0.18 1.834 0.24
1.952 1.33 0.876 0.18 1.870 0.23
2.000 1.34 0.900 0.19 1.908 0.24%
2.05% 1.33 0.925 0.19 1.932 $.24

0.956 0.18 1.970 0.24
0.975 0.19 2.006 0.24
1.000 0.22 2.037 0.24
1.026 0.22 2.074 0.24
1.050 0.21 2.103 0.24
1.076 0.23 2.139 0.25
2.176 0.25
2. Stecl/PMMA Composites
o <“g> <a§> n <c1>;’c1 n <cl>/cl

Random Periodic Random Periodic
0.170 0.003 0.011 0.170 0.84 Q.76 1.200 1.09 1.09
0.200 0.006 0.025 0.200 0.84 0.74 1.235 1.08 1.07
0.235 0.022 0.977 0.235 0.83 0.73 1.270 1.08 1.07
0.270 0.033 0.086 0.270 0.83 0.73 1.300 1.07 1.06
0.300 0.058 0.130 0.300 0.83 0.63 1.335 1.08 1.05
0.335 0.123 0.135 0.335 0.84 0.59 1.370 1.07 1.04
0.370 0.157 0.122 0.370 0.84 0.56 1,400 1.06 1.03
0.400 0.201 0.120 0.400 0.84 - 1.435 1.05 1.02
0.430 8.245 - 0.430 0.86 - 1.470 1.05 1.01
0.770 - 0.29 0.470 0.90 - 1.500 1.04 1.01
G.800 0.27 0.500 0.93 - 1.350 1.04 1.01
0.835 0.24 0.535 0.95 - 1.600 1.03 1.01
0.900 0.24 0.570 .93 - 1.700 1.03 1.01
0.970 0.20 0.600 0.93 1.09 1.750 1.02 1.02
1.000 0.15 D.635 0.93 1.03 1.800 1.02 1.02
1.035 0.14 0.670 0.94 0.98 1.850 1.0t 1.0L
1.070 0.06 0.700 0.96 0.96 1.500 1.01 1.00
1.100 Q.07 0.735 0.94% 0.94 1.950 1.01 1.00
1.135 0.12 0.770 0.94 0.91 2.000 1.00 1.00
1.170 0.17 0.800 0.93 0.88 2.050 1.00 0.99
1.200 0.18 0.835 0.94 0.86 2.100 1.00 1.00
1.235 0.19 0.870 0.94 0.82 2.150 1.00 0.97
1.270 0.22 0.900 JUMP 0.77 2.200 1.00 0.97
1.300 0.24 0.970 1.05 1.28 2,250 1.00 .96
1.000 1.04 1.23 2.300 1.00 0.96

1.035 1.03 L.19

1.070 1.02 1.17

1.100 1.02 1.14

1.135 1.01 1.12

1.170 Jume 1.11

* :
Frequemcy n im MHz, attenuation <a> in nepers/mm.



